目 录CONTENT

文章目录

Dijkstra算法——单源最短路

不争
2024-01-02 / 0 评论 / 0 点赞 / 22 阅读 / 1663 字

Dijkstra算法——单源最短路

image-20220510194700535

输入:

6 9
1 2 1
1 3 12
2 3 9
2 4 3
3 5 5
4 3 4
4 5 13
4 6 16
5 6 4

运行结果:

0 1 8 4 13 17

题解:

#include<stdio.h>
int main(){
    int e[10][10], dis[10],book[10], i, j, n, m, t1, t2, t3, u ,v, min;
    int inf = 99999999;
    //读取n和m表示顶点个数,m表示边的条数
    scanf("%d %d",&n, &m);

    //初始化
    for (i = 1 ; i <= n ; i ++){
        for (j = 1 ; j <= n ; j ++){
            if (i == j) e[i][j] = 0;
            else e[i][j] = inf;
        }
    }
    //读入边
    for (i = 1 ; i <= m ; i ++){
        scanf("%d %d %d",&t1, &t2, &t3);
        e[t1][t2] = t3;
    }
    //初始化dis数组,这里是1号顶点到其余各个顶点的初级路径
    for (i = 1 ; i <= n ; i ++){
        dis[i] = e[1][i];
    }
    //book数组初始化
    for (i = 1 ; i <= n ; i ++){
        book[i] = 0;
    }
    book[1] = 1;
    //Dijkstra算法核心语句
    for (i = 1 ; i <= n - 1 ; i ++){
        //找到离1号顶点最近的顶点
        min = inf;
        for (j = 1 ; j <= n ; j ++){
            if (book[j] == 0 && dis[j] < min){
                min = dis[j];
                u = j;
            }
        }
        book[u] = 1;
        for (v = 1 ; v <= n ; v ++){
            if (e[u][v] < inf){
                if (dis[v] > dis[u] + e[u][v])
                    dis[v] = dis[u] + e[u][v];
            }
        }
    }
    //输出最终结果
    for (i = 1 ; i <= n ; i ++) printf("%d ",dis[i]);
    return 0;
}
0

评论区